

Radiation Research at the Idaho Accelerator Center

Frank Harmon, Idaho Accelerator Center Idaho State University

January 2003

Idaho Accelerator Center

- Develop applications of radiation and nuclear science and accelerator technology.
- Provide a resource for university, industrial & governmental organizations involved in research and development that requires the use of nuclear science.
- Educate and train next generation of nuclear scientists and engineers.

What We Do

Basic nuclear measurements and radiation effects

- Instrument testing for DOE SPSS programs
- Photo-nuclear research for neutron sources and other applications
- Nuclear and space radiation effects

Biomedical radiation effects

- Dose and dose rate effects on biological systems
- Non-destructive evaluation, assay, elemental analysis and imaging
 - Compton back-scatter photons for materials, biological and industrial research and application
 - Accelerator based NDA/NDE development
 - Transmutation for trace element nuclide detection

Facilities

Laboratories

- Highly shielded laboratories designed for electron LINAC accelerators and accelerator driven neutron sources
- Electronics and mechanical shops
- 14,000 sq. ft. new space under construction- completion Fall '03 to house ISIS I & II, linac neutron source, IAC Business Development Facility
- Radiographic imaging laboratory

Accelerators

Van de Graaffs

- 2MV Positive Ion
- 2MV Positive Ion/Electron

Tandem

■ ~1 MV Terminal

S Band Standing Wave Linacs

- 2 MeV
- 4 MeV
- 6 MeV
- 18 MeV
- 22 MeV

L Band Traveling Wave Linac

Various X-Ray Generators

75-450 kV

Storage

- 10 MeV 10KA
 Pulse Power
 Electron
 Accelerator (ISIS I
 & II)
- 20MeV P Band, 3MW e linac
- 25 MeV S Band TW e linac
- 1.5 MeV RFQ

ISIS I (Idaho State Induction Acceleration System I)

This accelerator, formerly known as SLIA (Spiral Line Induction Accelerator), was donated to Idaho State University/IAC by Titan Systems Corporation, San Leandro CA, October 2001.

ISIS II (Idaho State Induction Acceleration System II)

Other Beam Capabilities: x-rays and γ-rays

Intense X-ray/ γ -ray beams from electron beams colliding with high-Z targets (tungsten)

- → bremsstrahlung beams
- → continuous spectrum of x-ray energies up to electron energy.

("useful" x-rays (> 1 MeV) $\sim 10^{14} - 10^{15}/\text{sec}$)

Other Beam Capabilities: Neutrons

- Neutron beams from photonueutron source can produce $\approx 10^{12}$ neutrons/sec with \sim fission spectrum.
- An accelerator source with $> 10^{13}$ n/s under construction.
- With re-commissioned 3 MW electron linac, can produce $\sim 10^{15}$ neutrons/sec

Other Beam Capabilities: Novel Beams

- Compton Back-scattered mono-chromatic X-rays, 5keV to 30 keV.
- X-ray radiation from the interaction of relativistic electron beams with periodic structures (i.e. crystals).

Conclusions:

The IAC has an extraordinary array of accelerators and radiation beams:

The IAC produces every (common) type of radiation beam over a wide range of dose rates, energies, etc.